Хранилища данных - статьи


Типы моделей


Классификационные модели позволяют делать прогнозы. Для данного нового кортежа классификационные модели прогнозируют, принадлежит ли кортеж одному из набора целевых классов. В примере с каталогом FSC классификационная модель, основываясь на накопленных к текущему моменту данных, определяет, приобретет ли клиент товар из каталога. Деревья решений и простые байесовы модели — два самых популярных типа классификационных моделей [5-7].

Регрессионные деревья и логистическая регрессия — два самых распространенных типа регрессионных моделей, которые прогнозируют численные атрибуты, такие как зарплата или возраст клиента [5].

В некоторых приложениях аналитики точно не знают набора целевых классов и полагают их скрытыми. Модели кластеризации, подобные K-Means и Birch, используются для определения соответствующего множества классов и классификации нового кортежа с отнесением его к одному из этих скрытых классов [6, 7].

Модели на базе правил, в частности модель правил ассоциаций, используются, чтобы выяснить, является ли покупка конкретного набора предметов обуви, с определенной степенью уверенности, индикатором приобретения и другого продукта.



Содержание раздела